Connect with us

Crypto

Bitcoin Miners Should Take Solar Energy Plus Storage More Seriously

Avatar photo

Published

on

Bitcoin Miners Should Take Solar Energy Plus Storage More Seriously

This is an opinion editorial by Ali Chehrehsaz, a mechanical engineer with 16 years of experience in the energy industry.

This article will outline how collecting solar energy and storing it can provide a powerful dynamic for bitcoin mining operations by outlining that:

  • Hybrid power plants that pair electrical generation, especially solar, with batteries are growing rapidly
  • Bitcoin mining will be incorporated in these plants alongside batteries, for the same reasons
  • Incorporating bitcoin mining as well as batteries requires proper sizing of deployed assets, and also splitting energy between batteries, mining and the grid in a way that optimizes revenue
  • The path forward will not be technically or commercially simple, but the opportunity is massive

Hybrid Power Plants

There is a new breed of power plant on the rise: batteries are being co-located with wind, solar photovoltaic (“PV”), fossil fuels, etc. to create what are referred to as “hybrid power plants.” Among these hybrid power plants, solar-plus-battery plants are the fastest-growing segment.

Lawrence Berkeley National Labs (LBNL) recently published findings in a briefing titled “2021 Was A Big Year For Hybrid Power Plants — Especially PV+Storage.” In the article, it mentioned: “Among the operational generator+storage hybrids, PV+storage dominates in terms of plant number (140), storage capacity (2.2 GW [gigawatts]/7.0 GWh [gigawatt hours]), storage:generator capacity ratio (53%), and storage duration (3.2 hours). ”

The briefing goes on to state that: “Last year was a breakout year for PV+storage hybrids in particular: 67 of the 74 hybrids added in 2021 were PV+storage. By the end of 2021, there was more GW of battery capacity operating in PV+storage hybrids (2.2 GW) than as standalone storage plants (1.8 GW). Much of the battery capacity added in hybrid form in 2021 was a battery retrofit to a pre-existing PV plant.

This last point is noteworthy, and we will come back to discuss it later. 

This trend is continuing and, as the article points out, there were more than 670 GW of solar plants in the interconnection queues in the U.S. as of the end of 2021.

Prisoners Of Time And Geography

Why are batteries being added to solar plants at such a rapid rate? There are two factors at play: deflation in the value available for solar energy and the ever-increasing competitiveness within the solar industry.

Problem One: Solar Value Deflation

What is solar value deflation? The LBNL briefing provides a hint: “…[PV+storage] can be found throughout much of the country… though the largest such plants are in California and the West…” In a word: geography

Advertisement
Submit your 2022 Austin Neighborhood Feedback

Solar power in locations like California, Nevada and Arizona is suffering from an anti-network effect. The anti-network effect of solar occurs in a market when penetration of solar in a location reaches a market-specific tipping point, after which the addition of new solar capacity reduces the benefit (i.e., value of solar generation) for all solar plants in that market. In its 2021 “Utility Scale Solar” report, LNBL demonstrates this problem in more detail.

As solar penetration on a grid increases, the value that solar power can capture decreases. This leads us to another hint: time. The hours during which any given solar generator can produce electricity are, by definition, the same hours that every other nearby solar generator can produce electricity, which end up becoming the hours for which the market is oversupplied and prices are lower. 

This is why renewables are, in a way, prisoners of time and geography. See the example of California outlined by LNBL: At 22% penetration, solar power can only capture 75% of the value of generation with a baseload 24/7 power profile. The problem is already visible in other markets at penetrations as low as 5%. 

All markets are heading in this direction. Owners of existing or planned solar projects need to find ways to hedge this risk and diversify their revenue streams. 

Problem Two: Extreme Competition

The other factor is the success of solar, creating an extremely competitive industry that is now challenging further growth.

The solar industry started much later than other power generation industries and has had to catch up to earn its share of the power generation mix. The industry has been using the levelized cost of energy (LCOE) metric to compare its costs to coal, natural gas and other generation sources.

Solar became the lowest LCOE form of generation in the last decade and this has been driving the incredible growth of solar capacity. But the competition with other generation sources continues within the industry itself, creating a race to the bottom which is eroding the returns for investors in solar. The following chart is from an article by Lazard titled “Levelized Cost Of Energy, Levelized Cost Of Storage, And Levelized Cost Of Hydrogen” which shows the rapid drop in solar levelized cost of electricity:

A continued reduction in solar LCOE translates into a downward trajectory of revenues from solar plants. As such, investors in solar are looking for ways to increase profits within the confines of the power market. Batteries are one such technology that provides a path to higher revenues through arbitrage, demand response and ancillary services.

The Roadmap For Bitcoin Miners

What is the opportunity for bitcoin miners? The way that storage has dovetailed neatly into the solar value stack provides a useful roadmap for bitcoin miners to follow. Bitcoin mining can also provide similar opportunities for solar plants to access higher profits by operating as a flexible resource for the grid.

Advertisement
Submit your 2022 Austin Neighborhood Feedback

But because batteries have a fixed storage capacity and provide a short-term energy arbitrage opportunity against the local power grid, eventually, even a battery must take the local grid market prices. Bitcoin mining has no storage limit (allowing long-term arbitrage) and can provide arbitrage anywhere on the globe (more on that topic: “Bitcoin Is The First Global Market For Electricity”).

The pairing of bitcoin mining and solar is simple in principle but making the physics and finance work in practice is not easy. To create accretive returns, Bitcoin miners need to accurately size their deployments when co-locating with solar and battery hybrid plants. The co-location strategy requires an understanding and prediction of the volume of electricity production from the solar plant and the associated value of each unit of energy produced by the plant. This must be done on both a long-term and a short-term (near real-time) basis, to support design/investment and operations. In addition to the probabilistic production volume of solar, knowing the value of energy at each interval must be understood (e.g., five-minute period); e.g., value can vary widely and at times can reach $0 per kilowatt hour (kWh) due to curtailments.

A side note on wind and solar curtailments: Below is a chart from BTU Analytics showing that wind and solar curtailments are increasing as more intermittent renewables are deployed on the Electric Reliability Council of Texas (ERCOT) grid. The most impacted wind and solar plants saw 29% and 21% (respectively) of their total annual generation curtailed in 2021 to 2022!

 Co-optimization for integrating bitcoin mining is a challenge worth solving for miners given the rise of solar and battery hybrid plants in the mix of new generation sources. This trend is likely to grow at an exponential rate.

In summary, increasing deflation in value and rise in competition of solar have incentivized the pairing of batteries with existing solar plants. Now there is a new incentive that will accelerate the growth of battery paired hybrid plants. 

What we have seen to date has taken place within the pre–Inflation Reduction Act (IRA) era. The IRA newly allows for a 30% investment tax credit (ITC) incentive for standalone batteries over the next ten years which will boost the redevelopment of existing solar plants to become hybrid plants.

As mentioned earlier, battery retrofit to existing solar plants is an emerging segment. This segment will grow even faster over the next decade with the new ITC incentive. The new incentive plus the investment in U.S.-based manufacturing of solar and batteries is poised to make the U.S. the leading nation in solar and storage power plants. Bitcoin miners have a huge opportunity to tap into one of the most rapidly growing forms of energy generation by figuring out the physics and finance of co-locating with solar and storage power plants.

This is a guest post by Ali Chehrehsaz. Opinions expressed are entirely their own and do not necessarily reflect those of BTC Inc or Bitcoin Magazine.

Read More

Advertisement
Submit your 2022 Austin Neighborhood Feedback

Continue Reading
Advertisement
Click to comment

Crypto

El Salvador Takes First Step To Issue Bitcoin Volcano Bonds

Avatar photo

Published

on

El Salvador Takes First Step To Issue Bitcoin Volcano Bonds

El Salvador’s Minister of the Economy Maria Luisa Hayem Brevé submitted a digital assets issuance bill to the country’s legislative assembly, paving the way for the launch of its bitcoin-backed “volcano” bonds.

First announced one year ago today, the pioneering initiative seeks to attract capital and investors to El Salvador. It was revealed at the time the plans to issue $1 billion in bonds on the Liquid Network, a federated Bitcoin sidechain, with the proceedings of the bonds being split between a $500 million direct allocation to bitcoin and an investment of the same amount in building out energy and bitcoin mining infrastructure in the region.

A sidechain is an independent blockchain that runs parallel to another blockchain, allowing for tokens from that blockchain to be used securely in the sidechain while abiding by a different set of rules, performance requirements, and security mechanisms. Liquid is a sidechain of Bitcoin that allows bitcoin to flow between the Liquid and Bitcoin networks with a two-way peg. A representation of bitcoin used in the Liquid network is referred to as L-BTC. Its verifiably equivalent amount of BTC is managed and secured by the network’s members, called functionaries.

“Digital securities law will enable El Salvador to be the financial center of central and south America,” wrote Paolo Ardoino, CTO of cryptocurrency exchange Bitfinex, on Twitter.

Bitfinex is set to be granted a license in order to be able to process and list the bond issuance in El Salvador.

The bonds will pay a 6.5% yield and enable fast-tracked citizenship for investors. The government will share half the additional gains with investors as a Bitcoin Dividend once the original $500 million has been monetized. These dividends will be dispersed annually using Blockstream’s asset management platform.

The act of submitting the bill, which was hinted at earlier this year, kickstarts the first major milestone before the bonds can see the light of day. The next is getting it approved, which is expected to happen before Christmas, a source close to President Nayib Bukele told Bitcoin Magazine. The bill was submitted on November 17 and presented to the country’s Congress today. It is embedded in full below.

Read More

Advertisement
Submit your 2022 Austin Neighborhood Feedback

Continue Reading

Crypto

How I’ll Talk To Family Members About Bitcoin This Thanksgiving

Avatar photo

Published

on

How I’ll Talk To Family Members About Bitcoin This Thanksgiving

This is an opinion editorial by Joakim Book, a Research Fellow at the American Institute for Economic Research, contributor and copy editor for Bitcoin Magazine and a writer on all things money and financial history.

I don’t.

That’s it. That’s the article.


In all sincerity, that is the full message: Just don’t do it. It’s not worth it.

You’re not an excited teenager anymore, in desperate need of bragging credits or trying out your newfound wisdom. You’re not a preaching priestess with lost souls to save right before some imminent arrival of the day of reckoning. We have time.

Instead: just leave people alone. Seriously. They came to Thanksgiving dinner to relax and rejoice with family, laugh, tell stories and zone out for a day — not to be ambushed with what to them will sound like a deranged rant in some obscure topic they couldn’t care less about. Even if it’s the monetary system, which nobody understands anyway.

Get real.

If you’re not convinced of this Dale Carnegie-esque social approach, and you still naively think that your meager words in between bites can change anybody’s view on anything, here are some more serious reasons for why you don’t talk to friends and family about Bitcoin the protocol — but most certainly not bitcoin, the asset:

Advertisement
Submit your 2022 Austin Neighborhood Feedback
  • Your family and friends don’t want to hear it. Move on.
  • For op-sec reasons, you don’t want to draw unnecessary attention to the fact that you probably have a decent bitcoin stack. Hopefully, family and close friends should be safe enough to confide in, but people talk and that gossip can only hurt you.
  • People find bitcoin interesting only when they’re ready to; everyone gets the price they deserve. Like Gigi says in “21 Lessons:”

“Bitcoin will be understood by you as soon as you are ready, and I also believe that the first fractions of a bitcoin will find you as soon as you are ready to receive them. In essence, everyone will get ₿itcoin at exactly the right time.”

It’s highly unlikely that your uncle or mother-in-law just happens to be at that stage, just when you’re about to sit down for dinner.

  • Unless you can claim youth, old age or extreme poverty, there are very few people who genuinely haven’t heard of bitcoin. That means your evangelizing wouldn’t be preaching to lost, ignorant souls ready to be saved but the tired, huddled and jaded masses who could care less about the discovery that will change their societies more than the internal combustion engine, internet and Big Government combined. Big deal.
  • What is the case, however, is that everyone in your prospective audience has already had a couple of touchpoints and rejected bitcoin for this or that standard FUD. It’s a scam; seems weird; it’s dead; let’s trust the central bankers, who have our best interest at heart.
    No amount of FUD busting changes that impression, because nobody holds uninformed and fringe convictions for rational reasons, reasons that can be flipped by your enthusiastic arguments in-between wiping off cranberry sauce and grabbing another turkey slice.
  • It really is bad form to talk about money — and bitcoin is the best money there is. Be classy.

Now, I’m not saying to never ever talk about Bitcoin. We love to talk Bitcoin — that’s why we go to meetups, join Twitter Spaces, write, code, run nodes, listen to podcasts, attend conferences. People there get something about this monetary rebellion and have opted in to be part of it. Your unsuspecting family members have not; ambushing them with the wonders of multisig, the magically fast Lightning transactions or how they too really need to get on this hype train, like, yesterday, is unlikely to go down well.

However, if in the post-dinner lull on the porch someone comes to you one-on-one, whisky in hand and of an inquisitive mind, that’s a very different story. That’s personal rather than public, and it’s without the time constraints that so usually trouble us. It involves clarifying questions or doubts for somebody who is both expressively curious about the topic and available for the talk. That’s rare — cherish it, and nurture it.

Last year I wrote something about the proper role of political conversations in social settings. Since November was also election month, it’s appropriate to cite here:

“Politics, I’m starting to believe, best belongs in the closet — rebranded and brought out for the specific occasion. Or perhaps the bedroom, with those you most trust, love, and respect. Not in public, not with strangers, not with friends, and most certainly not with other people in your community. Purge it from your being as much as you possibly could, and refuse to let political issues invade the areas of our lives that we cherish; politics and political disagreements don’t belong there, and our lives are too important to let them be ruled by (mostly contrived) political disagreements.”

If anything, those words seem more true today than they even did then. And I posit to you that the same applies for bitcoin.

Everyone has some sort of impression or opinion of bitcoin — and most of them are plain wrong. But there’s nothing people love more than a savior in white armor, riding in to dispel their errors about some thing they are freshly out of fucks for. Just like politics, nobody really cares.

Leave them alone. They will find bitcoin in their own time, just like all of us did.

This is a guest post by Joakim Book. Opinions expressed are entirely their own and do not necessarily reflect those of BTC Inc or Bitcoin Magazine.

Read More

Advertisement
Submit your 2022 Austin Neighborhood Feedback
Continue Reading

Crypto

RGB Magic: Client-Side Contracts On Bitcoin

Avatar photo

Published

on

RGB Magic: Client-Side Contracts On Bitcoin

This is an opinion editorial by Federico Tenga, a long time contributor to Bitcoin projects with experience as start-up founder, consultant and educator.

The term “smart contracts” predates the invention of the blockchain and Bitcoin itself. Its first mention is in a 1994 article by Nick Szabo, who defined smart contracts as a “computerized transaction protocol that executes the terms of a contract.” While by this definition Bitcoin, thanks to its scripting language, supported smart contracts from the very first block, the term was popularized only later by Ethereum promoters, who twisted the original definition as “code that is redundantly executed by all nodes in a global consensus network”

While delegating code execution to a global consensus network has advantages (e.g. it is easy to deploy unowed contracts, such as the popularly automated market makers), this design has one major flaw: lack of scalability (and privacy). If every node in a network must redundantly run the same code, the amount of code that can actually be executed without excessively increasing the cost of running a node (and thus preserving decentralization) remains scarce, meaning that only a small number of contracts can be executed.

But what if we could design a system where the terms of the contract are executed and validated only by the parties involved, rather than by all members of the network? Let us imagine the example of a company that wants to issue shares. Instead of publishing the issuance contract publicly on a global ledger and using that ledger to track all future transfers of ownership, it could simply issue the shares privately and pass to the buyers the right to further transfer them. Then, the right to transfer ownership can be passed on to each new owner as if it were an amendment to the original issuance contract. In this way, each owner can independently verify that the shares he or she received are genuine by reading the original contract and validating that all the history of amendments that moved the shares conform to the rules set forth in the original contract.

This is actually nothing new, it is indeed the same mechanism that was used to transfer property before public registers became popular. In the U.K., for example, it was not compulsory to register a property when its ownership was transferred until the ‘90s. This means that still today over 15% of land in England and Wales is unregistered. If you are buying an unregistered property, instead of checking on a registry if the seller is the true owner, you would have to verify an unbroken chain of ownership going back at least 15 years (a period considered long enough to assume that the seller has sufficient title to the property). In doing so, you must ensure that any transfer of ownership has been carried out correctly and that any mortgages used for previous transactions have been paid off in full. This model has the advantage of improved privacy over ownership, and you do not have to rely on the maintainer of the public land register. On the other hand, it makes the verification of the seller’s ownership much more complicated for the buyer.

Title deed of unregistered real estate propriety

Source: Title deed of unregistered real estate propriety

How can the transfer of unregistered properties be improved? First of all, by making it a digitized process. If there is code that can be run by a computer to verify that all the history of ownership transfers is in compliance with the original contract rules, buying and selling becomes much faster and cheaper.

Secondly, to avoid the risk of the seller double-spending their asset, a system of proof of publication must be implemented. For example, we could implement a rule that every transfer of ownership must be committed on a predefined spot of a well-known newspaper (e.g. put the hash of the transfer of ownership in the upper-right corner of the first page of the New York Times). Since you cannot place the hash of a transfer in the same place twice, this prevents double-spending attempts. However, using a famous newspaper for this purpose has some disadvantages:

  1. You have to buy a lot of newspapers for the verification process. Not very practical.
  2. Each contract needs its own space in the newspaper. Not very scalable.
  3. The newspaper editor can easily censor or, even worse, simulate double-spending by putting a random hash in your slot, making any potential buyer of your asset think it has been sold before, and discouraging them from buying it. Not very trustless.

For these reasons, a better place to post proof of ownership transfers needs to be found. And what better option than the Bitcoin blockchain, an already established trusted public ledger with strong incentives to keep it censorship-resistant and decentralized?

If we use Bitcoin, we should not specify a fixed place in the block where the commitment to transfer ownership must occur (e.g. in the first transaction) because, just like with the editor of the New York Times, the miner could mess with it. A better approach is to place the commitment in a predefined Bitcoin transaction, more specifically in a transaction that originates from an unspent transaction output (UTXO) to which the ownership of the asset to be issued is linked. The link between an asset and a bitcoin UTXO can occur either in the contract that issues the asset or in a subsequent transfer of ownership, each time making the target UTXO the controller of the transferred asset. In this way, we have clearly defined where the obligation to transfer ownership should be (i.e in the Bitcoin transaction originating from a particular UTXO). Anyone running a Bitcoin node can independently verify the commitments and neither the miners nor any other entity are able to censor or interfere with the asset transfer in any way.

Advertisement
Submit your 2022 Austin Neighborhood Feedback
transfer of ownership of utxo

Since on the Bitcoin blockchain we only publish a commitment of an ownership transfer, not the content of the transfer itself, the seller needs a dedicated communication channel to provide the buyer with all the proofs that the ownership transfer is valid. This could be done in a number of ways, potentially even by printing out the proofs and shipping them with a carrier pigeon, which, while a bit impractical, would still do the job. But the best option to avoid the censorship and privacy violations is establish a direct peer-to-peer encrypted communication, which compared to the pigeons also has the advantage of being easy to integrate with a software to verify the proofs received from the counterparty.

This model just described for client-side validated contracts and ownership transfers is exactly what has been implemented with the RGB protocol. With RGB, it is possible to create a contract that defines rights, assigns them to one or more existing bitcoin UTXO and specifies how their ownership can be transferred. The contract can be created starting from a template, called a “schema,” in which the creator of the contract only adjusts the parameters and ownership rights, as is done with traditional legal contracts. Currently, there are two types of schemas in RGB: one for issuing fungible tokens (RGB20) and a second for issuing collectibles (RGB21), but in the future, more schemas can be developed by anyone in a permissionless fashion without requiring changes at the protocol level.

To use a more practical example, an issuer of fungible assets (e.g. company shares, stablecoins, etc.) can use the RGB20 schema template and create a contract defining how many tokens it will issue, the name of the asset and some additional metadata associated with it. It can then define which bitcoin UTXO has the right to transfer ownership of the created tokens and assign other rights to other UTXOs, such as the right to make a secondary issuance or to renominate the asset. Each client receiving tokens created by this contract will be able to verify the content of the Genesis contract and validate that any transfer of ownership in the history of the token received has complied with the rules set out therein.

So what can we do with RGB in practice today? First and foremost, it enables the issuance and the transfer of tokenized assets with better scalability and privacy compared to any existing alternative. On the privacy side, RGB benefits from the fact that all transfer-related data is kept client-side, so a blockchain observer cannot extract any information about the user’s financial activities (it is not even possible to distinguish a bitcoin transaction containing an RGB commitment from a regular one), moreover, the receiver shares with the sender only blinded UTXO (i. e. the hash of the concatenation between the UTXO in which she wish to receive the assets and a random number) instead of the UTXO itself, so it is not possible for the payer to monitor future activities of the receiver. To further increase the privacy of users, RGB also adopts the bulletproof cryptographic mechanism to hide the amounts in the history of asset transfers, so that even future owners of assets have an obfuscated view of the financial behavior of previous holders.

In terms of scalability, RGB offers some advantages as well. First of all, most of the data is kept off-chain, as the blockchain is only used as a commitment layer, reducing the fees that need to be paid and meaning that each client only validates the transfers it is interested in instead of all the activity of a global network. Since an RGB transfer still requires a Bitcoin transaction, the fee saving may seem minimal, but when you start introducing transaction batching they can quickly become massive. Indeed, it is possible to transfer all the tokens (or, more generally, “rights”) associated with a UTXO towards an arbitrary amount of recipients with a single commitment in a single bitcoin transaction. Let’s assume you are a service provider making payouts to several users at once. With RGB, you can commit in a single Bitcoin transaction thousands of transfers to thousands of users requesting different types of assets, making the marginal cost of each single payout absolutely negligible.

Another fee-saving mechanism for issuers of low value assets is that in RGB the issuance of an asset does not require paying fees. This happens because the creation of an issuance contract does not need to be committed on the blockchain. A contract simply defines to which already existing UTXO the newly issued assets will be allocated to. So if you are an artist interested in creating collectible tokens, you can issue as many as you want for free and then only pay the bitcoin transaction fee when a buyer shows up and requests the token to be assigned to their UTXO.

Furthermore, because RGB is built on top of bitcoin transactions, it is also compatible with the Lightning Network. While it is not yet implemented at the time of writing, it will be possible to create asset-specific Lightning channels and route payments through them, similar to how it works with normal Lightning transactions.

Conclusion

RGB is a groundbreaking innovation that opens up to new use cases using a completely new paradigm, but which tools are available to use it? If you want to experiment with the core of the technology itself, you should directly try out the RGB node. If you want to build applications on top of RGB without having to deep dive into the complexity of the protocol, you can use the rgb-lib library, which provides a simple interface for developers. If you just want to try to issue and transfer assets, you can play with Iris Wallet for Android, whose code is also open source on GitHub. If you just want to learn more about RGB you can check out this list of resources.

This is a guest post by Federico Tenga. Opinions expressed are entirely their own and do not necessarily reflect those of BTC Inc or Bitcoin Magazine.

Read More

Advertisement
Submit your 2022 Austin Neighborhood Feedback

Continue Reading